J. S. Dugdale and F. E. Simon

From the relationship between ϕ and V, one can derive the quantity

$$
\gamma=-\frac{\mathrm{d} \ln \phi}{\mathrm{~d} \ln V} .
$$

For values of the volume greater than $13 \mathrm{ml} . \gamma$ is approximately constant and equal to $2 \cdot 4$. At lower volumes γ begins to diminish slowly, but this may be within the limits of accuracy.

Table 4. C_{v}, S and $\left(U-U_{0}\right) / T$ as a function of T / ϕ
(All in cal $/{ }^{\circ} \mathrm{C}$ per mole)

T / ϕ	C_{v}	S	$\left(U-U_{0}\right) / T$
0.04	0.02	0.008	0.010
0.06	0.08	0.023	0.017
0.08	0.19	0.060	0.043
0.10	0.38	0.121	0.091
0.12	0.64	0.213	0.158
0.14	0.96	0.333	0.248
0.16	1.33	0.483	0.359
0.18	1.73	0.662	0.491
0.20	2.21	0.870	0.645

(ii) The isochores

It is now possible to calculate the isochores by integrating the relationship

$$
\begin{equation*}
\left(\frac{\delta p}{\delta T}\right)_{V}=\gamma \frac{C_{v}}{V}, \tag{3}
\end{equation*}
$$

which is valid if C_{v} is a function only of T / ϕ, and ϕ depends only on volume. The integration constants were determined from the p, V, T values on the melting curve. The isochores at eight densities are shown in figure 9, together with the equilibrium line between the two solid modifications.
(iii) The isotherms and compressibilities

As may be seen from figure 9 the isochores may be extrapolated to $0^{\circ} \mathrm{K}$ with considerable accuracy, and in this way the p, V relationship at absolute zero can be derived. Figure 10 shows this relationship. From this in turn the compressibility at $0^{\circ} \mathrm{K}$ as a function of volume may be found and is shown in table 5. Isotherms and compressibilities at other temperatures may also be obtained.

Table 5. The compressibility of solid helium at $0^{\circ} \mathrm{K}$

volume (ml).	pressure (atm)	$10^{5} \beta$ $\left(\mathrm{~atm}^{-1}\right)$	volume (ml)	pressure (atm)	$10^{5} \beta$ $\left(\mathrm{~atm}^{-1}\right)$
$10 \cdot 5$	2170	10	$15 \cdot 0$	295	54
$11 \cdot 0$	1660	12	$16 \cdot 0$	200	76
$12 \cdot 0$	1070	17	$17 \cdot 0$	136	103
$13 \cdot 0$	695	26	$18 \cdot 0$	88	140
$14 \cdot 0$	460	38	$19 \cdot 0$	50	190

